Emissions RxTM - Thermal Oxidizer Emissions Kx_{IM} - Luermal Oxidizer

Operations & Maintenance Manual

Thermal Oxidizer Model : Serial Number : Job Name:

-VERSON 1.2 (4-9-2020) -

Operators Manual

Job Name:	
Customer:	
Order No.:	
GENERAL	3
1.1 WARNING	5
1.2 Checklist	7
1.3 Site Conditions Data Sheet	9
1.4 Unit Performance Data Sheet	10
1.5 Model Capacity	11
1.6 Model Nomenclature	12
2. Principal of Operation	13
3. Installation	17
4. Electrical	19
5. Unit Operation	22
6. Maintainance	24
7. Troubleshooting	25
8. Replacement Parts	26
Appendix	28
A ORIFICE CALCULATIONS	29
B COMBUSTION CONSTANTS	34
C UEL AND LEL FOR COMBUSTIBLES	35
D UEL AND LEL FOR TOXIC GASES	36

-

2

GENERAL

The installation of Emission Rx T.O. must be done according to the applicable local and national codes.

The person, or persons, performing the work must be familiar with, and operate within, these applicable codes.

Installation, modification or service of the equipment supplied by Emissions Rx, must only be carried out by qualified, licensed persons.

Emission Rx. will not be held responsible for any damages caused by unqualified persons, unsafe practices or unauthorized modifications to the received goods.

The pressure drop in the gas line should be kept to a minimum. Therefore, the gas supply line should be as short as possible.

A complete Emission Rx. Start-Up Report must be completed by the installer and a copy sent to Emission Rx. This is a warranty requirement!

It is the responsibility of the qualified installation person to determine the following from the local gas authority (company) prior to starting the burner:

The installation of Emissions Rx Thermal Oxidizers must be done according to the applicable local and national codes. The person, or persons, performing the work must be familiar with, and operate within, these applicable codes.

Installation, modification or service of the equipment supplied by Emissions Rx, must only be carried out by qualified, licensed persons. Emissions Rx will not be held responsible for any damages caused by unqualified persons or unsafe practices. The pressure drop in the Waste gas line should be kept to a minimum. Therefore, the Waste gas supply line should be as short as possible. A complete Emissions Rx Start-Up Report must be completed by the installer and a copy sent to Emissions Rx. This is a warranty requirement!

It is the responsibility of the purchaser to determine the following prior to starting the Thermal Oxidizer:

- Type of Waste gas
- Higher Heating Value (BTU per cubic foot)
- Maximum CO₂ (Carbon Dioxide) content of flue Waste gas
- Incoming Waste gas pressure
- Whether, or not, the Waste gas meter is pressure and/or temperature compensated.

Acquire the correction factor in order to determine the correct Thermal Oxidizer input Chemical composition of special Waste gases (Digester, Sewage, Manufactured etc.)

1.1 WARNING

Read the following warnings and instructions before attempting startup of any Combustion Control device.

If you smell Waste gas: - Ventilate Room!

- Extinguish any open flame!
- Do NOT smoke!
- Do NOT tamper with or touch anything ELECTRICAL!
- Do NOT attempt to start the Thermal Oxidizer!
- Call the Waste gas supply company!
 - The installation, Start Up, Operation and Servicing of an Emission Rx Thermal Oxidizer must be done according to the manufacturers' instructions and applicable local and national codes.
 - Incorrect procedures can lead to the exposure of components of the fuel and combustion products which can cause serious bodily harm or death.
 - The storage of flammable liquids in an open container near the Thermal Oxidizer application, or in the same room, can be dangerous and should be avoided.
 - Before commencing any service work:
 - 1. Close off all fuel lines!
 - 2. Switch off and isolate electrical power to the equipment!

The use of Teflon tape as an oil and Waste gas pipe sealant can cause fuel valves to fail and create hazardous situations. If Teflon tape is used, ALL WARRANTIES ARE INVALID and Emissions Rx will not accept responsibility for any liability.

As a safety precaution, Emissions Rx has adopted the policy that all <u>automated waste gas</u> service piping must have 1 safety valve and a Back Flash Arrestor. Emissions Rx cannot accept responsibility for any installation which compromises this safety policy, even if local code states otherwise. NOT FOLLOWING THIS Emissions Rx POLICY WILL RENDER ANY WARRANTY VOID!

Any work performed on the Thermal Oxidizer, applicable interfaced equipment, or controls must be done by qualified and trained personnel familiar with the product and licensed to undertake such work. All work must be completed within the parameters of local and national codes.

Do not set up the flame on Emissions Rx Thermal Oxidizers without accurate flue Waste gas measuring instruments. Correctly calibrated combustion instruments are the only reliable means to determine a safe operation of the Thermal Oxidizer.

All safety and control devices must be checked for correct operation and adjusted with the correct settings before operating the unit.

This manual may be updated without notice. Consult your authorized distributer or Combustion Systems Co Inc. for the latest version.

1.2 Checklist

In order to avoid damage to the equipment, check the following prior to starting the Thermal Oxidizer:

- Heat Exchanger is installed properly (if applicable)
- Limits and operating controls on the Thermal Oxidizer are mounted and wired correctly (if applicable)
- Type and range of all controls are correct for the application
- Oxidation chamber dimensions are adequate for the required waste gas disposal rate
- Oxidation chamber is unobstructed to allow for required flow rate
- Thermal Oxidizer/Heat Exchanger can be fired, at the required firing rate, long enough to take flue Waste gas readings
- Thermal Oxidizer/Controls are installed correctly (if applicable)
- Thermal Oxidizer is installed correctly
- No damage to the Thermal Oxidizer has resulted from transportation or installation
- The electrical supply is correct for the Thermal Oxidizer Elements and for the control voltage
- The field wiring to the Thermal Oxidizer and control panel (if applicable) is in accordance with the shop drawings provided
- All field wiring meets applicable local and national codes
- Sufficient combustion air is available for the Thermal Oxidizer to operate at the desired temperature and excess air.
- All equipment interfaced to the Thermal Oxidizer controls are correctly wired and are functioning properly
- Waste gas is identified prior to purchase and remains with range specified.
- The waste gas train is complete and complies to the applicable code
- No damage to the component parts of the waste gas train has resulted from transportation or installation (if applicable)

- The waste gas lines are the right size, have been installed correctly, are clear of dirt, have been purged and do not leak
- The incoming waste gas pressure is adequate for the installed waste gas train (if applicable) and required firing rate this per Instruction Manual!

Emissions RxTM - Operations Manual Emissions Kx_{IM} - Oberations Manual

1.3 – Site Conditions Data Sheet

Job Name: Customer Name: Ship to Address		Date:	
Customer P.O.			
Customer Project File No. :			
Quoted Model:			
Site Elevation FASL Feet			
Waste Gas Pressure Min (inches W.C.):	Ma	x (inches W.C.) _	
Waste Gas through put (Btu/hr):	HHV	LHV	_
Waste Gas Volume (ACFM)	(SCFM)	_ (LPM)	
Waste Gas Temperature Degrees	°F	°C	
Waste Gas Analysis by	Wt. %	Volume %	
Carbon			
Hydrogen			
Nitrogen			
Oxygen			
Sulfur			
Moisture			
Ash			
Other 1.			
Other 2.			
Other 3			
Common Name:			
Available Electrical Power Voltage:	V/ PH/	Hz	
Code Construction: [] None	[] NFPA	[] C1D2BCD	[] Other
If Oher Specify			-

1.4 Unit Performance Data Sheet

1000 Btu/SCF Natural Gas Basis of Design (Maximum Btu/hr Input)
 Emission Rx Waste Gas Delivery requirements: 1. Waste Gas Connection Size: NPT 316 SS 2. Waste Gas Static Pressure Required at ERx Connection: ("W.C.)
Waste Gas Flash Protection: 1. [] N/A 2. [] Solenoid 3. [] Back Flash Arrestor 4. [] Solenoid & Back Flash Arrestor
Emission Rx Combustion Ari Requirements: 1. Combustion Air Required: SCFM 2. Combustion Air Static Pressure: Inches W.C. Type of Combustion Air Delivery: Type of CA Control 1. [] Natural Draft [] N/A 2. [] Owner Supplied C.A. [] On/Off 3. [] ERx Supplied Forced Draft Fan [] Modulated
F.D. Motor Amperage: Amps
Combustion Air Flash Protection: [] N/A [] Combustion Air - Flash Attenuator [] Combustion Air Back Flash Arrestor [] Combustion Air Flame Arrestor
T.O. Exhaust Flash Protection: [] N/A [] Exhaust Gas - Flash Attenuator [] Exhaust Gas - Back Flash Arrestor [] Exhaust Gas - Flame Arrestor
Control Voltage Standard: 120/1/60 Other []:V/PH/Hz Control Circuit Amperage:Amps Heating Element Voltage: Standard 120/1/60 [] Other []:V/PH/Hz Heating Element Control: 1. Continuous [] 2. Intermittent [] 3. PID Set Point []

-

1.5 Model Capacity

Unit Model is based on Unit Capacity in Btu/hr. input. Larger units available upon request.

Intr No No No No No<							Design Air input to	o Waste G	as Ratio (based on) 100	% concentration	of Waste G	ias HHV							
Image Image <t< td=""><td>Btu/CF Gas</td><td>LPM</td><td>CFM Btu/M</td><td>Btu's/hr.</td><td>CF/H</td><td>Max Air CFH</td><td>Btu/CF Gas</td><td>LPM</td><td>CFM Btu/M</td><td>Btu's/hr.</td><td>CF/H</td><td>Max Air CFH</td><td>Btu/CF Gas</td><td>LPM</td><td>CFM</td><td>Btu/M</td><td>Btu/H</td><td>CF/H</td><td>Max Air CFH</td></t<>	Btu/CF Gas	LPM	CFM Btu/M	Btu's/hr.	CF/H	Max Air CFH	Btu/CF Gas	LPM	CFM Btu/M	Btu's/hr.	CF/H	Max Air CFH	Btu/CF Gas	LPM	CFM	Btu/M	Btu/H	CF/H	Max Air CFH
1 0 00000 00000 0 0 0 0 <td>1000 Methane</td> <td>1</td> <td>0.035315 35.3147</td> <td>2 2,118.88</td> <td>2.12</td> <td>31.78</td> <td>2500 Propane</td> <td>1</td> <td>0.035315 88.28681</td> <td>5,297.21</td> <td>2.12</td> <td>79.46</td> <td>0 Nitrogen</td> <td>1</td> <td>0.035315</td> <td>0</td> <td>0</td> <td>2.12</td> <td>31.78</td>	1000 Methane	1	0.035315 35.3147	2 2,118.88	2.12	31.78	2500 Propane	1	0.035315 88.28681	5,297.21	2.12	79.46	0 Nitrogen	1	0.035315	0	0	2.12	31.78
 	28.3168 1	2	0.105944 105.944	5 4,237.77 2 6,356.65	4.24	95.35	28.3168 1	2	0.105944 264.8604	10,594.42	4.24	238.37	28.3168 1	2	0.105944	0	0	4.24	95.35
17.50 10.000 10.000 10.00 10.000		4	0.141259 141.258	9 8,475.53	8.48	127.13		4	0.141259 353.1472	21,188.83	8.48	317.83		4	0.141259	0	0	8.48	127.13
 		4.7195	0.166668 166.667	8 10,000.07	10.00	150.00		4.7195	0.166668 416.6696	25,000.18	10.00	375.00		4.7195	0.166668	0	0	10.00	150.00
1 2 0.2521		5	0.176574 176.573	6 10,594.42	10.59	158.92		5	0.176574 441.4341	26,486.04	10.59	397.29		5	0.176574	0	0	10.59	158.92
1 0.2523 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 0.538 25.25 2		7	0.247203 247.203	1 14.832.18	12.71	222.48		7	0.211888 529.7209	31,783.25	12.71	476.73		7	0.247203	0	0	14.83	222.48
9 0		8	0.282518 282.517	8 16,951.07	16.95	254.27		8	0.282518 706.2945	42,377.67	16.95	635.67		8	0.282518	0	0	16.95	254.27
10 0.510.0 510.0 1.50.0		9	0.317833 317.832	5 19,069.95	19.07	286.05		9	0.317833 794.5813	47,674.88	19.07	715.12		9	0.317833	0	0	19.07	286.05
1:1 0.4577 45.76 0.56 0.56 0.45		10	0.353147 353.147	2 21,188.83	21.19	317.83		10	0.353147 882.8681	52,972.09	21.19	794.58		10	0.353147	0	0	21.19	317.83
13 0		12	0.423777 423.776	7 25,426.60	25.43	381.40		12	0.423777 1059.442	63,566.50	25.43	953.50		12	0.423777	0	0	25.43	381.40
 14 0.0456 0.050 0		13	0.459091 459.091	4 27,545.49	27.55	413.18		13	0.459091 1147.729	68,863.71	27.55	1032.96		13	0.459091	0	0	27.55	413.18
1 0		14	0.494406 494.406	1 29,664.37	29.66	444.97		14	0.494406 1236.015	74,160.92	29.66	1112.41		14	0.494406	0	0	29.66	444.97
12 0.0200 0.0102		15	0.565036 565.035	6 33,902,14	31.78	476.75		15	0.529721 1324.302	79,458.13	31.78	1271.33		15	0.565036	0	0	31.78	476.75
11 0.556 0.556 0.318/1 0.7216		17	0.60035 600.350	3 36,021.02	36.02	540.32		17	0.60035 1500.876	90,052.55	36.02	1350.79		17	0.60035	0	0	36.02	540.32
19 0.508 0.509 0.508 0.001 0.50 0.508 0.00 0.425 0.002 2 0.7169 74.50 0.508 0.00 0.425 0.002 0.00 0.425 0.002 2 0.7169 74.503 0.4354 0.426 0.20 0.00 0.00 0.425 0.00 0.00 0.425 0.00 0.00 0.425 0.00 0.00 0.455 0.00 <t< td=""><td></td><td>18</td><td>0.635665 635.66</td><td>5<mark>38,139.90</mark></td><td>38.14</td><td>572.10</td><td></td><td>18</td><td>0.635665 1589.163</td><td>95,349.76</td><td>38.14</td><td>1430.25</td><td></td><td>18</td><td>0.635665</td><td>0</td><td>0</td><td>38.14</td><td>572.10</td></t<>		18	0.635665 635.66	5 <mark>38,139.90</mark>	38.14	572.10		18	0.635665 1589.163	95,349.76	38.14	1430.25		18	0.635665	0	0	38.14	572.10
1 1		19	0.67098 670.979	8 40,258.79	40.26	603.88		19	0.67098 1677.449	100,646.97	40.26	1509.70		19	0.67098	0	0	40.26	603.88
22 0.7024 76.229 65.26 97.023 0.20 0.0		20	0.741609 741.609	2 44,496.55	42.58	667.45		20	0.741609 1854.023	111,241.38	42.50	1668.62		20	0.741609	0	0	42.58	667.45
2 0.2229 0.2239 0.2239 0.2239 0.2239 0.2239 0.2339 0.2239 0.2339		22	0.776924 776.923	9 46,615.44	46.62	699.23		22	0.776924 1942.31	116,538.59	46.62	1748.08		22	0.776924	0	0	46.62	699.23
1 0		23	0.812239 812.238	7 48,734.32	48.73	731.01		23	0.812239 2030.597	121,835.80	48.73	1827.54		23	0.812239	0	0	48.73	731.01
⁶ ⁷ ⁷ ⁶ ⁷		24	0.847553 847.553	4 50,853.20	50.85	762.80		24	0.847553 2118.883	127,133.01	50.85 52.97	1907.00		24	0.847553	0	0	50.85 52.97	762.80
2 0		26	0.918183 918.182	8 55,090.97	55.09	826.36		26	0.918183 2295.457	137,727.43	55.09	2065.91		26	0.918183	0	0	55.09	826.36
28 0.08812 0.08812 0.08812 0.0 0.933 880.9 10.0421 0.0442 0.0427 0.446 0.0427 0.446 0.0428 0.0 0.033 880.9 11.00442 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.04444 0.04444 0.04		27	0.953498 953.497	6 <mark>57,209.85</mark>	57.21	858.15		27	0.953498 2383.744	143,024.64	57.21	2145.37		27	0.953498	0	0	57.21	858.15
a a		28	0.988812 988.812	3 59,328.74	59.33	889.93		28	0.988812 2472.031	148,321.84	59.33	2224.83		28	0.988812	0	0	59.33	889.93
1 1.049756 05.063.9 0.0		30	1.024127 1024.12	2 63,566,50	63.57	953.50						÷		30	1.024127	0	0	63.57	921.71
22 1.130071 1130.072 07.80 107.05 Rate. 32 1.130071 0 0 67.80 107.05 34 1.120071 120.05.27 77.04.244 7.04 100.06 33 1.2558 0 0 7.24.24 100.06 35 1.25915 71.02 104.85 33 1.20915 0 7.4.24 110.24 36 1.2713 127.13 127.13 127.13 127.13 0 0 7.4.24 1112.41 36 1.2723 127.13 77.24 7.2.4 114.42 127.13 0 0 8.4.5 127.33 37 1.3727.4 177.24 82.64.6 122.43 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 0 0 8.4.7 127.33 <		31	1.094756 1094.75	6 65,685.39	65.69	985.28	-	Designed	Air Flow delivered is ba	sed on Btu/hr. inp	out, not Wa	ste Gas Flow		31	1.094756	0	0	65.69	985.28
33 1.16338 105.20 7.2.64 100.648 34 1.200.71 7.2.64 100.645 34 1.2.007.11 100.645 35 1.1.201.71 7.2.64 114.54 35 1.2.7.31 0 0 7.2.34 114.54 35 1.2.7.31 10.5.64 7.3.86 7.4.64 114.55 35 1.2.7.31 0 0 7.3.26 114.57 38 1.3.7.93 10.7.7.24 10.7.7.24 12.7.7.5 38 1.3.416 0 0 8.5.7 10.7.7.24 12.7.7.5 38 1.3.416 0 0 8.5.7 10.7.7.24 12.7.7.5 38 1.3.416 0 0 8.5.7 10.7.7.7 12.5.6.4 2.6.4 12.3.5.7 10.7.7.7 12.5.6.4 2.6.4 12.3.5.7 13.9.7 13.9.7.7 13.9.6.4.5 2.6.4 12.3.5.7 13.9.7.7 13.9.6.4.5 2.6.4 12.3.5.7 13.9.7.7 13.9.6.4.5 2.6.7 13.9.1.1 13.4.6 0 0 13.9.7.7 13.9.6.4.5 13.9.9.1 13.9.9.1 13.9.9.1 13.9.9.1 13.9.9.1		32	1.130071 1130.07	1 67,804.27	67.80	1017.06		Rate.						32	1.130071	0	0	67.80	1017.06
95 122002 122003 12203 12203 12203 0 0 7.456 1112.4 36 12713		33	1.165386 1165.38	6 69,923.16	69.92	1048.85								33	1.165386	0	0	69.92	1048.85
36 1.2713 70.270 & 11 76.28 1144.20 36 1.271.33 0.0 0.78.20 1127.58 37 1.3665 130.665 7.32.86 7.8.0 1127.58 38 1.3415 0.0 0.82.54 122.85 38 1.34125 134.72.7 8.2.61.84 2.0.5 122.35 38 1.34125 0.0 0.82.54 122.85 40 1.41258 9.47.53.4 8.4.6 127.33 0.0 0.82.6 122.85 40 1.41258 9.42.53.4 8.4.6 123.85 133.13 40 1.41258 0.0 0.85.6 127.13 41 1.4479.0 8.6.7.13 138.35 139.13 135.33 0.0 0.93.3 138.45 42 1.553.88 9.3.20.87 9.3.3 139.84 44 1.553.84 0.0 0.93.3 139.84 43 1.549.77 0.40.47 7.464.4 1.249.77 0.40.47 0.40.47 1.460.78 44 1.529.77 0.00.82.4 1.553.8 0.0 0.97.74 1.460.30 45		34	1.236015 1236.01	5 74,160.92	72.04	1112.41								35	1.236015	0	0	74.16	1080.05
37 1.306645 107, 30 78.40 177, 58 38 1.317274 107, 72 107, 73 107,		36	1.27133 1271.3	3 76,279.81	76.28	1144.20								36	1.27133	0	0	76.28	1144.20
13 13439 13439 13439 03012 12073 39 137724 137224 020164 12235 30 137224 0 0 81.6 12335 40 141259 14239 847554 84.6 12133 44 14353 0 84.7 12335 41 14354 14539 84.7554 84.7 12133 44 14353 0 84.7 12133 42 145354 85348 8321257 333 138.6 43 155384 0 9533 1386.6 44 155384 155384 55387.6 9537 149.25 0 9533 138.6 45 15597.1 153.73.8 149.25 9.9 149.25 0 97.47 142.01 44 155587 159.9 93.87 149.25 9.9 149.33 159.16 159.17 155.60 0 157.71 152.50 0 157.34 149.25 159.16 159.16 159.16 159.16 159.16 159.165.54 159.165.54 159.1		37	1.306645 1306.64	5 78,398.69	78.40	1175.98								37	1.306645	0	0	78.40	1175.98
40 1.412.89 44.75 227.31 41 1.44294 44.76 127.32 42 1.48274 48.674.22 65.77 133.11 42 1.48274 48.93 11.11 136.66 42 1.432.43 0 0 8.89 11.136.66 44 1.53348 15.853 35.31.97 55.353.13 0 0 9.3.23 138.64 45 1.58516 158516 30.77 7.468.06 7.47 146.20 45 1.589.16 0 9.3.23 138.94 46 1.62477 7.47 7.468.06 7.47 146.20 46 1.5547.7 0 0 9.7.47 146.20 47 1.65972 10.70 7.488.64 9.3.1 15.7.5 140.20 0 10.3.13 15.7.3 48 1.65071 10.0.10, 16.1 10.1.71 15.5.60 15.9.1.60 1.0.1.7.1 15.5.60 1.0.1.5.1 1.0.1.5.1 1.0.1.5.1 0 1.0.5.4 1.599.1.6 1.0.1.7.1 1.52.5.60 1.599.1.6 1.0.5.5.4 1.599.1.6 1		38	1.34196 1341.9	6 80,517.57 4 82,636,46	80.52	1207.76								38	1.34196	0	0	80.52 82.64	1207.76
41 1.44790 48,674.2 86.67 1303.11 42 1.4521 452.31 852.31 859.31 899.11 356.66 334.90 43 1.5533 155.33 91.10 91.16 1366.66 43 1.5533.3 0 0 9.11 1366.66 44 1.5534.8 155.84 93.89.76 95.35 1303.21 1369.66 45 1.58916.3 0 9.32.3 1398.66 45 1.58916.3 95.89.72 95.85.2 95.95		40	1.412589 1412.58	9 84,755.34	84.76	1271.33								40	1.412589	0	0	84.76	1271.33
42 1.48218 1.482.18 88.99 1.34.00 0 9.8.99 1.34.00 44 1.55384 1.53.33 0 1.11 1.36.68 44 1.55384 1.53.348 3.23.3 1.398.46 45 1.553148 3.23.3 1.398.46 46 1.62477 1.627.27 0 9.7.1 1.462.03 46 1.62477 1.07.96.44 10.171 1.525.60 0 0.13.3 1.557.31 47 1.65707 105.507 103.825.29 1.03.30 1.557.38 1.05.41 1.01.71 1.555.60 50 1.765736 105.64.17 105.46 1589.16 0 1.05.94 1.830.15 0 0 1.05.94 1.850.71 51 1.801518 105.60 100.80.66 100.80.65 1.980.16 1.05.92 0 0 1.05.94 1.850.73 53 1.871.88 1.868.56 1.01.81.94 10.86 1.62.97 1.863.66 1.00.81.94 1.01.94 1.980.95 1.980.95 0 1.05.94 1.980.95 0 1.		41	1.447904 1447.90	4 86,874.22	86.87	1303.11								41	1.447904	0	0	86.87	1303.11
1.153348 153348 153348 153348 0 0 9.13 15368 4 153348 153348 153348 0 0 9.23 1480.25 45 158163 158163 158348 0 0 9.23 1480.25 46 1589163 1593.92 99.59 1483.31 44 1589163 0 0 9.53 1480.25 47 1659792 1059.972 99.597.23 99.59 1493.31 47 1659792 0 0 10.17 152.56 50 1.75736 105.76 105.97.35 105.73 105.73 0 0 15.9 15.00.51 0 105.9 152.57 51 1.801051 10.00.51 105.00.51 105.00.57 105.73 105.73 105.73 105.73 105.73 105.73 105.73 105.99 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9 10.199.9		42	1.483218 1483.21	8 88,993.11	88.99	1334.90								42	1.483218	0	0	88.99	1334.90
45 1.5891:61 95.497.0 95.53 1430.25 46 1.62477 1624.77 724.864.0 1.62477 0 0 95.95 1630.23 47 1.6597.92 95.97.25 99.587.52 99.59 1433.81 48 1.6591.07 10.064.1 101.71 152.56 48 1.6591.07 10.064.4 101.71 152.56 49 1.730422 170.42 10.02.9 1.65 1.557.3 10.544.17 105.94 1589.16 90 1.7567.36 10.944.17 10.54 105.94 1589.16 90 1.7567.36 0 0 10.54 1.558.91 50 1.7567.36 10.944.17 10.80.6 10.20.95 1.640.15 1.500.151 10.050.16 10.050.4 1.552.73 51 1.800515 10.054.10 11.552.80 1.552.73 1.942.11 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1 1.942.1		45	1.553848 1553.84	8 93.230.87	93.23	1398.46								43	1.553848	0	0	93.23	1398.46
46 1.624477 162.477 9.748.6.6 9.747 1462.03 47 1.659792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 156.9792 100.9706.41 101.71 152.560 50 1.767376 105.94.17 105.94 155.93 156.9316 156.937 156.936 156.936 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 156.937 <td></td> <td>45</td> <td>1.589163 1589.16</td> <td>3 95,349.76</td> <td>95.35</td> <td>1430.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>45</td> <td>1.589163</td> <td>0</td> <td>0</td> <td>95.35</td> <td>1430.25</td>		45	1.589163 1589.16	3 95,349.76	95.35	1430.25								45	1.589163	0	0	95.35	1430.25
47 1.693/92 103/92 0 93/93 1493.81 48 1.695/107 102/06.41 101.71 1256.60 0 101.71 1556.76 49 1.73022 173.0422 103.83 1557.83 6 1.76736 105.76 </td <td></td> <td>46</td> <td>1.624477 1624.47</td> <td>7 97,468.64</td> <td>97.47</td> <td>1462.03</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>46</td> <td>1.624477</td> <td>0</td> <td>0</td> <td>97.47</td> <td>1462.03</td>		46	1.624477 1624.47	7 97,468.64	97.47	1462.03								46	1.624477	0	0	97.47	1462.03
49 1.730422 173.0422 103.82 1557.38 50 1.765736 105.944.17 105.94 1559.16 50 1.765736 0 105.94 159.1 51 1.801051 1501.05 10.05.06 108.06 108.05 150.01 10.05.04 105.94 152.02 52 1.836366 128.03 10.18.19 110.18 1652.73 0 0 105.94 1620.95 54 1.90695 196.955 11.44.19.71 11.42 1716.30 54 1.906995 0 0 105.94 1168.45 56 1.97752 19.57752 11.567.78 <td></td> <td>47</td> <td>1.659/92 1659.79</td> <td>2 99,587.52 7 101.706.41</td> <td>99.59</td> <td>1493.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>47</td> <td>1.659792</td> <td>0</td> <td>0</td> <td>99.59 101.71</td> <td>1493.81</td>		47	1.659/92 1659.79	2 99,587.52 7 101.706.41	99.59	1493.81								47	1.659792	0	0	99.59 101.71	1493.81
50 1.7657.36 105.34.17 105.94 1589.16 50 1.7657.36 0 0 105.94 1520.95 51 1.801051 108.063.06 108.06 106.05 105.94 1620.95 52 1.836366 101.81.94 110.18 1652.73 53 1.87168 12.300.82 112.30 108.45.1 54 1.90995 106.95 14.417.11 174.53 54 1.90995 106.94 105.94 176.37 55 1.942.31 116.53.85.9 116.54 1778.05 106.74 178.06 106.94 1779.86 56 1.9776.52 11.867.74 118.66 10779.86 56 1.9776.57 0 0 105.94 178.166 57 2.012939 102.776.36 12.077.86 118.67.78 118.66 1779.86 57 2.012939 0 0 105.94 118.165 58 2.0482.54 102.85.9 12.31.13 1077.05 118.67.14 12.501.18 12.51.98 10.95.94 118.165 59 2.0482.54 12.048.254 12.		49	1.730422 1730.42	2 103,825.29	103.83	1557.38								49	1.730422	0	0	103.83	1557.38
1 1.8001051 180.050 180.050 180.050 1620.95 1620.95 52 1.83656 105.11.94 110.18 1652.73 52 1.83656 105.11.94 105.54 1652.73 53 1.87168 1871.68 112,300.82 112,30 1064.51 53 1.87168 0 105.54 1682.73 54 1.90995 104,017.1 114.42 1716.30 54 1.90995.10 0 0 105.94 1748.08 55 1.94231 165.58.59 116.56 1778.66 118.05 56 1.977625 0 0 105.94 1748.08 56 1.977625 197.625 116.54 1778.66 118.165 57 2.01293 0 0 105.94 181.165 57 2.01293 1027.63 127.03 1397.02 1397.02 1097.05 100.94 1997.05 61 2.118883 217.13.01 127.13 1997.05 61 2.118883 0 105.94 1997.05 62 2.189513 131.37.07 131.37 <td< td=""><td></td><td>50</td><td>1.765736 1765.73</td><td>6 105,944.17</td><td>105.94</td><td>1589.16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td>1.765736</td><td>0</td><td>0</td><td>105.94</td><td>1589.16</td></td<>		50	1.765736 1765.73	6 105,944.17	105.94	1589.16								50	1.765736	0	0	105.94	1589.16
1 12000000000000000000000000000000000000		51 52	1.801051 1801.05	1 108,063.06	108.06	1620.95								51 52	1.801051	0	0	105.94	1620.95
54 1.900995 104,419,71 114,42 1716,30 54 1.900995 0 0 105,54 1716,30 55 1.94231 116,538,539 116,54 1778,66 1077,05 118,77,72 118,77,72 118,77,72 118,77,72 119,77,25 118,77,72 119,77,72 1		53	1.87168 1871.6	8 112,300.82	110.18	1684.51								53	1.87168	0	0	105.94	1684.51
55 1.942.31 1165.38.59 116.54 1748.08 56 1.977625 118.67.38.59 116.54 1778.08 57 2.012.939 10.07.63.6 10.78 118.67.56 58 2.048254 204.82.54 122.98 1811.65 57 2.012.939 0 0 105.94 1843.43 59 2.048256 206.3569 127.143 127.01 1877.21 59 2.08659 0 0 105.94 1843.43 50 2.048256 0.28569 127.13 1907.00 197.05 60 2.118883 211.88.30 127.13 1907.00 105.94 1843.43 61 2.154198 215.148 127.138 197.25 193.87.8 60 2.118883 211.88.30 0 0 105.94 1938.78 62 2.1895.13 131.37.07.8 131.37 1970.56 63 2.224828 123.49.8 10.9.94 1202.34 64 2.260142 2.60.42 135.61 203.413 64 2.260142 0 0 105.94 203.413 <		54	1.906995 1906.99	5 114,419.71	114.42	1716.30								54	1.906995	0	0	105.94	1716.30
56 197/625 197/625 10/625 0 10/625 <t< td=""><td></td><td>55</td><td>1.94231 1942.3</td><td>1 116,538.59</td><td>116.54</td><td>1748.08</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>55</td><td>1.94231</td><td>0</td><td>0</td><td>105.94</td><td>1748.08</td></t<>		55	1.94231 1942.3	1 116,538.59	116.54	1748.08								55	1.94231	0	0	105.94	1748.08
58 2.048224 122,055,24 122,055,24 122,055,24 122,055,24 105,94 1843,43 59 2.048254 122,055,24 122,01 1875,21 1875,21 58 2.048254 0 0 105,94 1875,21 60 2.118883 127,313 127,01 139,70 193,78 0 0 105,94 1997,00 61 2.154198 129,251.89 129,25 1938,78 0 0 105,94 1997,05 62 2.189513 131,37 1970,56 0 105,94 1970,56 63 2.224282 224,88 134,846,6 133,49 2002,34 0 105,94 1970,56 64 2.260142 260,142 135,605,54 135,61 2034,13 0 105,94 2020,34 65 2.295457 137,727,43 137,73 205,591 66 2.360087 0 105,94 2036,94 66 2.30072 139,946,31 139,85 2097,69 66 2.360087 0 105,94 224,94 67 2		50	2 012939 2012 93	9 120 776 36	118.66	1779.86								55	2 012939	0	0	105.94	1779.86
59 2.083569 208.3569 208.3569 20.083569 0 0 105.94 1875.21 60 2.118883 1271.330 1271.31 1907.00 60 2.118883 0 0 105.94 1997.00 61 2.154198 129.251.89 129.25 1938.78 61 2.15813 1097.00 62 2.189513 131.37 1970.56 63 2.224282 22.428.82 134.866 134.94 200.34 64 2.2601.42 0 105.94 2002.34 64 2.2601.42 135.608.54 135.61 2034.13 2005.91 66 2.30772 109.44 2005.91 66 2.30772 109.44 2005.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.30772 109.44 205.91 66 2.		58	2.048254 2048.25	4 122,895.24	122.90	1843.43								58	2.048254	0	0	105.94	1843.43
60 2.118883 21/1.3.01 12/1.3.01 12/1.3.01 12/1.3.01 12/1.3.01 12/1.3.01 12/1.3.01 1907.00 61 2.118483 21/1.3.803 12/1.3.01 12/1.3.01 12/1.3.01 12/1.3.01 1907.00 105.94 1907.00 61 2.154198 215.198 125.198 125.198 125.198 0 0 105.94 1907.00 62 2.1895.13 113.07.78 131.3.71 1970.56 63 2.224828 133.498.66 133.49 0 0 105.94 1900.20 64 2.2601.42 125.068.54 135.61 2034.13 64 2.2601.42 135.063.54 135.61 2034.13 65 2.2954.57 127.72.18 137.73 2065.91 66 2.30772 109.04 105.94 2005.91 66 2.30772 139.48.08 144.08 2065.91 105.94 2007.91 67 2.3660.87 141.965.19 141.97 2129.48 68 2.401401 2.401.144.04.80 144.82 2151.26 69 2.436716 146.202.96		59	2.083569 2083.56	9 <mark>125,014.13</mark>	125.01	1875.21								59	2.083569	0	0	105.94	1875.21
61 2.18513 121,20,707 131,317 1370,75 131,319 60 105,94 11970,56 63 2.224828 1224828 1224828 134,89,66 133,49 2002,34 64 2.26142 261,042 136,94 2002,34 64 2.26142 261,042 137,97 131,73 2065,91 65 2.2954,57 205,443 136,343 105,94 2023,41 66 2.30772 139,481 139,85 2005,91 66 2.30772 0 0 105,94 2029,48 66 2.30772 139,481 139,85 2097,69 66 2.30772 0 0 105,94 2029,48 68 2.401401 144,084,08 144,08 2129,48 67 2.36697 0 0 105,94 2129,48 68 2.401401 144,084,08 144,08 2129,48 68 2.401401 0 105,94 2129,48 69 2.436716 243,716 146,202,206 146,20 2193,04 70 2.472031 0 105,94 </td <td></td> <td>60 61</td> <td>2.118883 2118.88</td> <td>3 127,133.01</td> <td>127.13</td> <td>1907.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>60 61</td> <td>2.118883</td> <td>0</td> <td>0</td> <td>105.94</td> <td>1907.00</td>		60 61	2.118883 2118.88	3 127,133.01	127.13	1907.00								60 61	2.118883	0	0	105.94	1907.00
63 2.224828 133,49,566 133,49 2002.34 64 2.260142 2260.142 135,605.54 135,61 2034.13 65 2.25457 252,557 137,727 135,605.54 135,61 2003.14 66 2.330772 230,0772 139,846.31 139,85 2097,69 66 2.330772 0 0 105,94 2029,47 67 2.366087 141,955.19 141,97 2129,48 66 2.330772 0 0 105,94 2029,69 68 2.401401 2.040.40 144,08.08 144.08 2161.26 68 2.401401 0 0 105,94 2129,48 69 2.4367.16 146,202.96 146.20 2193.04 69 2.4367.16 0 0 105,94 2129,48 70 2.472031 2472.03 148,321.28 148.32 224.83 0 0 105,94 2139.04 70 2.472031 2472.031 148.32 224.83 0 0 105,94 2139.04 70 2.472031 2472.0		62	2.189513 2189.51	3 131,370.78	131.37	1958.78								62	2.189513	0	0	105.94	1958.78
64 2.2601.42 215,008.54 135,61 2034.13 64 2.2601.42 16 2.2601.42 105,94 2034.13 65 2.295457 2295457 137,72 139,73 105,954 2035,91 66 2.330772 139,846.31 139.85 2097,69 66 2.330772 0 0 105.94 2039,76 67 2.366087 141,965.19 141.97 2129,48 67 2.366087 0 0 105.94 2193,04 68 2.401041 2040,408 144.08 144.08 2161.26 68 2.401041 0 0 105.94 2193,04 70 2.472031 2472.031 148,321.84 148.32 2224.83 70 2.472031 0 0 105.94 2193,04 70 2.472031 2472.031 148,321.84 148.32 2224.83 70 2.472031 0 0 105.94 2193,04		63	2.224828 2224.82	8 133,489.66	133.49	2002.34								63	2.224828	0	0	105.94	2002.34
05 2.4259457 249.4577 134/12/453 131/12/12/453 2005.711 66 2.330772 2330772 139.463.11 139.85 2007.69 67 2.366087 2366.087 141.965.19 141.97 2129.48 68 2.401401 240.101 144.048.08 144.08 2161.25 69 2.436716 2436.716 146.202.96 146.20 2193.04 70 2.472031 247.2031 148.321.84 148.32 2224.83		64	2.260142 2260.14	2 135,608.54	135.61	2034.13								64	2.260142	0	0	105.94	2034.13
67 2.366087 141,965.19 141.97 2129.48 67 2.366087 0 0 105.94 22129.48 68 2.401401 2401.401 144,084.08 144.08 2161.26 68 2.401401 0 0 105.94 2129.48 69 2.436716 2436.716 146,202.96 146.20 2199.04 69 2.436716 0 0 105.94 2129.48 70 2.472031 2472.031 148.321 2224.83 70 2.472031 0 0 105.94 2129.48		65 66	2.295457 2295.45	2 137,727.43 2 139,846 31	137.73	2065.91								65 66	2.295457	0	0	105.94	2065.91
68 2.401401 244,084.08 144.08 2161.26 68 2.401401 0 0 105.94 2161.26 69 2.436716 2436.716 146,202.96 146.20 2193.04 69 2.436716 0 0 105.94 2193.04 70 2.472031 2472.031 148,321.84 148.32 2224.83 0 0 105.94 2224.83		67	2.366087 2366.08	7 141,965.19	141.97	2129.48								67	2.366087	0	0	105.94	2129.48
69 2.436716 2436.716 146.20 2193.04 70 2.472031 2472.031 148.321 2224.83		68	2.401401 2401.40	1 144,084.08	144.08	2161.26								68	2.401401	0	0	105.94	2161.26
		69 70	2.436716 2436.71	6 146,202.96 1 148.331.04	146.20	2193.04								69 70	2.436716	0	0	105.94	2193.04
		70	2.472031 2472.03	146,321.84	148.32	2224.83	1							70	2.472031	0		105.94	2224.83

-

Emissions Rx Design Capacity is based on Natural Gas - CH4 - 1000 Btu/CF HHV

If actual heat value drops to 0 as is the case of N2 (Nitrogen has "0" Heating Value) the air flow will remain sufficient to support the design Waste Gas max Btu/hr. input analysis.

1.6 Model Nomenclature

			E	missior	n Rx M	odel N	umber	^r Matr	ix			
		ER _x	-1	-2	-3	-4	-5	-6	-7	-8		
		ER _x										
	Unit Capa	city in Btu/	'nr. Input @	@100%Sat.				Exhaust Protection				
	Α	0-10K Btu	′hr.					Α	None			
	В	10K-15K B	tu/hr.					В	Back Flash Preventer			
1	С	15K-40K B	tu/hr.				5	С	N/A			
	D	40K-80K B	tu/hr.				-	D	N/A			
	E	80K-140K	Btu/hr.					E	N/A			
	F	N/A						F	N/A			
	Combusti	on Air Deliv	very					Electroni	cs			
	Α	Natural Dr	aft					Α	None			
	В	Blower						В	1 PID Loo	p Indicating controller w/ T/C		
2	С	C1D2 Pum	р				6	С	2 PID Loo	p Indicating controller w/ T/C		
	D	Owner Sup	oplied					D	3 PID Loo	p Indicating controller w/ T/C		
	E	N/A						E	PLC 3 loop BMS/CCS Modulated Air			
	F	N/A						F	PLC & Clo	ud Storage		
	Waste Gas	s Protectio	า					Unit Con	struction			
	Α	None						Α	None			
-	В	Flame Arre	estor FA				_	В	NFPA 85			
3	С	Blocking V	alve BV				7	С	C1D2			
	D	Flame Arre	estor (FA) &	Blocking V	alve BV			D	N/A			
	E	N/A						E	N/A			
	F	N/A						F	N/A			
	Combusti	on Air Prot	ection					Options				
	A	None						Α	None			
	В	Back Flash	Preventer				•	В	Rain Cap			
4	С	N/A					8	С	Alarm Ho	rn .		
	D	N/A						D	Waste Ga	s Flow Meter		
	E	N/A						E	Panel Pur	ge Kit		
	F	N/A						F	Continue	d Below		
		1.0			Opti	ons Contin	ued:					
F	Direct Clo	ud Reporti	ng Service									
G	Recomme	nded Spare	Parts Kit fo	or this unit								
H ·	Exhaust H	eat Exchan	ger/Flash A	rrestor Wea	ather Shield							
I	I Combustion Air Flash Arrestor Weather Shield											
J	Spark Ignit	tor & Ignitic	on Transfor	mer								
K	Safety Cag	ge										
L	H₂S Kit											
Μ	Specify											
N	Specify											
0	Specify											

-

Select capacity and features below.

2. Operation

Thermal Oxidization (T.O.) has long been the standard method of destroying waste gas streams such as VOC's in large quantities. Traditionally T.O. devices have been installed in very passive environments which can tolerate extreme external temperatures such as, an open field, atop of structural towers in "non-hazardous environment". Natural gas combustion has been the preferred method of generating the heat necessary to allow oxidation to take place in these large systems. Excess air, internal to the waste gas stream or mechanically injected by a separate supply device, provides the Oxygen for Oxidation. With the advent of new regulations and tightening of existing allowable limits regulation such as Title VI of US EPA, and specifically the new TRI regulations, smaller and smaller quantities of VOC's emissions are being tolerated.

The waste gas stream, for this discussion relates to those compounds (natural or manmade) which are known as Toxic Release Inventory (TRI) gas or Volatile Organic Compounds (VOC's), that require oxidization by US EPA or other Jurisdictional air quality authorities.

2.1 Theory of Operation:

TRI Gases or VOC's consist of Hydrogen and Carbon molecules which by themselves or in combination with other elements form highly toxic substances or are environmentally egregious in their natural state such as Natural Gas, which is mostly Methane (CH₄). When Natural gas reacts with air in the process of combustion heat and light is released. In that process air, containing 20% Oxygen and 80% Nitrogen is mixed with Natural Gas (Fuel) in a ratio of 10 Cubic feet of air and 1 cubic foot of fuel. Theoretically, there is enough Oxygen (O₂) in 10 Cubic foot of air to completely unite with the Hydrogen and Carbon that contained in 1 Cubic foot of Natural Gas (CH₄). If all of the Oxygen (O₂) is completely united with all of the Carbon and Hydrogen then the reaction is as follows:

Air = O_2 + $4N_2$ and Natural Gas = CH_4

 $2O_2 + 8 N_2 + CH_4 > CO_2 + 2H_2O + 8N_2$

In the process Products of Combustion (P.O.C) are elevated to 3600 °F. This perfect mixture is said to be a Stoichiometric mixture.

If perfect mixing of the fuel and air does take place it will result in forming Carbon dioxide (CO₂) and Water Vapor (H₂O) while releasing heat. Because the N₂ introduce with the air is inert, it may pass through the T.O. unchanged chemically but elevated in temperature.

-VERSON 1.1

If complete mixing doesn't occur then Carbon Monoxide (CO) is formed in various amounts as follows:

 $2O_2 + 8 N_2 + CH_4 > CO + CO_2 + 2H_2O + 8N_2 + O$

In order to ensure that more than enough Oxygen is available a minimum of 15% additional air molecules needs to be present during the process of combustion or 11.5 Cubic Feet of air per 1 Cubic foot of Natural Gas or:

2.3 O2 + 9.2 N2 + CH4 > CO2 + 2H2O + 9.2N2+0.3 O2 = 15% excess air with (Products of combustion at 3200 °F).

The higher the excess air is, the lower the exit gas temperature of Products of Combustion (POC) will be. This is true for all gases listed in standard Tables of Combustion Constants (in Appendix B). If a large amounts of air is present in a Fuel/Air mixture, lowering the (Hydrocarbons/Air) ratio to (< 0.4:10) such that the amount of natural gas in the mixture is less than 4% of the total, it is said to be too lean for auto ignition or below the Lower Explosion Limit (LEL). This means that such mixtures at ambient temperatures, when exposed to an Ignition source, will not react. On the other hand, if the mixture is too rich with fuel i.e. > 15% (1.5cf. fuel: 10 cf. air) it will not ignite because it is said to have exceeded the Upper Explosion Limit (UEL).

Complete conversion of hydrocarbons to H₂O

and CO_2 through Thermal Oxidation can only take place if a sufficient amount of Oxygen (normally from Air) is available in the presents a of heat source for a sufficient amount of time for the reaction to take place.

The normal state of operation of many T.O. systems is that of a waste gas stream is in the LEL range with an insufficient quantity of hydrocarbons to allow for self-sustained combustion. Without an external heat source to heat the contaminated waste stream, typically a Natural gas flame to provide the heat source as stated earlier.

2.2 Successful Destruction of VOC's Excess O2 and temperature are indicators as to quality of destruction.

Therefore depending on the waste gas to be destroyed the T.O. exit gas temperature is maintained between $1100 \,^{\circ}$ F and $1800 \,^{\circ}$ F and contains sufficient excess air to measure a minimum of $3\% \,O_2$ in the exit flue gas sample or 15% excess air in a chamber sized to provide for retention times of no less than 0.3 seconds on the low end to 2 seconds on gases containing Dioxins and Furans.

2.3 Emission Rx.[™] (Patent Pending) utilizes these principals on a smaller scale to meet existing and pending legislation for TRI gas regulations.

In its simplest form the Emission Rx.[™] (Patent Pending) is an electrically heated thermal oxidizer designed to oxidize hydrocarbon waste gas streams. The Oxidization Chamber is preheated to 1500 °F by an electrical heating element, the waste gas is introduced in a vertical flow that must rise through the oxidation chamber and cross the heating elements. At the same time air is admitted at the unit's base and is mixed with the waste gas stream. Both the waste gas and the air are elevated to >1400 °F as they exit the oxidation chamber. Oxidation begins to occur at the point where heated fuel and air mixing begins. A secondary retention combustion section in series with the oxidation chamber provides sufficient

retention time to allow the hydrocarbons in the waste gas to react with the oxygen in the air to complete the combustion process which converts Hydrogen to H_2O (Water Vapor) and Carbon to Carbon Dioxide CO_2 .

In practice the actual constituents being delivered to the Emissions Rx. T.O. unit are not known as they are often a mixture of several different sources and can vary from LEL to UEL within the waste gas stream or have no Hydrocarbons at all as in the case of a Nitrogen Purge. Because the waste gas stream may be an unknown analysis at any given time, its flow is limited such that, irrespective of the waste streams constituents, the Emission Rx. T.O. will to deliver sufficient air to maintain a minimum of 11.5:1 ratio of air to waste gas stream.

-VERSON 1.1

Therefor the ERx T.O. can insure that the unit will always have sufficient Oxygen to oxidize the hydrocarbons in the waste gas stream.

This is accomplished by the introduction a fixed amount of air and limiting the waste gas stream to a customer prescribed design value and worst-case basis. Known gas characteristics are stated in the data sheet and becomes the basis of design to include Specific Gravity and Higher Heating Value. The waste gas flow is controlled by a flow limiting orifice and static supply pressure based on a stated gas.

Heat in the T.O. cell is supplied by an electric heating element specifically design for this duty. Air may be supplied by simple induction from the bottom or by an air pump depending on the owner's requirements and destruction capacity. Oxidized Products of Combustion (POC), inert waste gas and associated heat is exhausted to atmosphere out the top.

The Emission Rx cell design allows for many iterations of this basic principal to include manually operated units which require minimal safety features in capacities of 10,000 Btu/hr or less, to units with capacities in excess of 80,000 Btu/hr installed in C1D2 area classification or constructed to NFPA 85, 75 and 68. These units may also be PLC based contentious and contain Emissions Monitoring which can both display or post compliance locally or to the owners DCS or directly to a cloud based data collection space supplied and monitored by Emissions Rx for maintenance and reporting purposes.

Options available with the Emission Rx unit. Examples: -Personnel Safety Cage -H₂S Kit

Optional safety cage shown above.

Base Unit.

3.0 Installation

Your Emissions Rx Tri Gas Oxidizer comes assembled requiring only minor installation measures.

3.1 Contents:

- 1. The Emissions Rx Thermal Oxidizer Assembly
- 2. Exhaust Gas Heat Exchanger
- A universal mounting bracket (Shipped Loose). These brackets can be installed in many different configurations to meet your specific needs. (See recommended mounting arrangements). Also included is the Mixing Nozzle and Venture assembly shipped loose for field assembly.
- 4. Single PID Temperature control system w/ (1) T/C and CID2 Purge Panel kit installed.
- 5. Multi Source TRI Gas Manifold assembly containing:
 - a. TRI Gas Blocking Valve
 - b. TRI Gas Flash Arrestor
 - c. Optional pressure gages and flow meters.
 - d. Optional ½ inch Stainless Steel piping manifold with NPT fittings and Isolation Ball Valves (Maximum 10 source taps)
- 6. Depending on the model you have selected, additional components may also include:
 - a. CID2 Air Pump
 - b. Pressure Regulator
 - c. Personnel protection safety cage

3.2 Location:

- Identify a location for the Emissions Rx[™] Thermal Oxidizer that is compatible with local codes and restrictions. (C1D2 classification is certified on site).
- Proper Ventilation is required by code. The Oxidizer requires atmospheric air (NO concentrated oxygen) to operate and will emit CO₂ + N₂ + H₂O + inerts in the sample at <300 °F.
- Make-up air may be required if installed in a walk-in enclosure.
- If the Emission Rx[™] is located where personnel may come in contact with the oxidizer shell, the unit must be ordered with a Personnel Protection Safety Cage.
- Capacity and pricing calculations based on 10ft maximum distance between control panel and Emissions Rx unit.
- If utilizing air pump purchased with unit, air pump must be placed within 10ft of the control panel and be plumbed with a minimum of 3/8 inch stainless steel tubing.
- If utilizing air pump supplied by others, there must be a minimum of 20 PSI and 4 CFM at the point of connection of the control panel.

• <u>3.4 Dimensions</u>

All measurements are in inches

3.5 By Others:

The owner shall install an isolation valve upstream of Emissions Rx[™] Tri gas point of connection. This valve shall be sized and constructed for the intended use.

4.0 Electrical

Each unit has been tested in the factory for proper operation and is ready for installation per the attached instructions. Power should not be applied to the system until the installation check is complete.

4.1 Wiring Diagram

Emissions Rx -VERSON 1.1

4.1.1 Wiring Diagram Notes

1.) Power to the Pressurized Air Source is supplied and initiated (by the others).

2.) Unit Power is available when applied to L1 and L2.

3.) Control Power is present when ON/OFF Switch is in ON position however operation is inhibited until panel door is closed.

4.) When the panel pressure is sufficient to close the Purge Air Pressure switch ZPSS-1 the system will power up and start the heat-up sequence. (See Sequence Timeline).

5.) All Set point temperatures are permanently set and no adjustments are necessary.

6.) Initial warm-up. - The unit will reach 1500 F in about 4 hours as displayed on the digital indicator display.

7.) The Waste Gas Blocking Valve will open emitting gas in the Oxidation Chamber.

8.) Chamber temperature will be maintained at 1750 F once Gas is emitted into the Oxidizer Chamber.

9.) Should the Oxidization Chamber drop below 1500 F the Waste Gas Blocking Valve will close.

4.2 Power requirements:

Unless otherwise noted in the installation manual supplied with the unit, all units utilize 115 volt single phase power and must be have supply service protection, conduit and wiring properly sized for the location and power consumption of the system supplied.

- Each element will consume 1000 Watts (example unit in this packet utilizes 2 elements)
- Control panel will draw no more than 20FLA at 110 VAC.
- Oxidation air source, whether supplied with the order or by others, will require additional power and circuit protection not supported by the control panel. (See the individual wiring diagram for details)

4.3 Electrical Connections:

Your Emissions Rx T.O. only requires termination to (4) lugs located inside the ½" LC supplied with the unit. A 9/32" Hex head wrench is required to make the final connection. The top lug has been tightened to the heating element but should be checked for tightness. The lower lug is loose and ready to receive the field power connection. *Caution should be taken pulling field wire into the LC as the heating element lead is attached to a ceramic electrical isolation tube which is easily fractured.*

¾" LC conduit containing field terminal for power wiring.

4.4 Electrical Checks

After the unit has been mounted in accordance to **Section 3.0** and prior to landing supply wiring. Check all coil terminations (4) for continuity to the casing and frame. There should be no continuity from the elements to the casing or frame. If there is continuity, stop and contact your distributer. DO NOT apply power to the unit.

4.5 Electrical Gas Tight Connections:

Any junction or connection made to the control panel must be installed in conjunction with and area classifications where applicable.

High Temperature Silicone Caulk has been installed from the factory on heating element leads entering the field connecting LC conduit supplied with the unit. This serves to prevent gas from inside the cell from exiting the Cell.

5.1 Emission Rx[™] Event Reaction Chart

5.2 Emissions Rx[™] Thermal Oxidizer

Model <u>ERx -A-D-C-B-B-B-E</u> contains an exhaust gas T/C and an Indicating Temperature Controller (ITC) which is designed to maintain a constant 1,750 °F at the Exhaust of the ERx T.O. by cycling the heating element power which will reduce electrical usage and extend heating element life. Per the Electrical Section 4.0. Power and field wiring between the ERx Control Panel and the Oxidizer unit is by the owner. The Unit ON/OFF switch is located inside the control panel and must be switched to the ON position before closing the enclosure door.

- The unit will not actually apply power to the control circuitry nor Oxidizer cell until the enclosure is purged with fresh air delivered by the Combustion Air Source (e.g. : ADI pump).
 Once the Control Panel is pressurized, power is applied to the Temperature Indicating Controller (TIC) and the Cell will begin to heat per Column (1)- (2) in the above control sequence time line.
- When the Cell temperature reaches its operating limit, the Oxidizing Air Valve (OAV) is released to modulate to maintain the set point temperature at 1,750 °F and the TRI Gas Blocking Valve (TRI-GBV) is opened. As the OAV opens TRI gas is induced into the Cell through the Venturi.
- 3. High Volatile Organic Compound (VOC) concentration in the waste gas will drive temperature in the cell higher and the Heating Element will be turned off allowing Oxidation of TRI Gas to drive the thermal process.
- 4. If the TRI Waste Gas concentration of VOC's diminishes or is replaced with Inserts such as N₂ or CO₂ the Heating Element will again be energized to bring the Oxidization Chamber temperature back to set point.
- 5. If however Cell temperature drops below Oxidization temperature the heating element will be powered, the OAV will close, and the TRI-GBV will close if the heating element cannot recover or maintain Oxidation Temperature.
- 6. Once the Cell Temperature recovers the system will return to operation mode 2 above.
- 7. Loss of Purge Air for any reason will shut the Unit down by killing power to the control system completely and close a set of alarm contacts which can imitate an Optional Alarm Horn or Light or Both.

6.0 Maintenance

The Emissions Rx Thermal Oxidizer has been designed to minimize routine maintenance requirements and yet is fully repairable with original CSI supplied parts. Using components supplied by other than CSI will void all warrantee, safety and performance guarantee.

The following table recommends component inspection and intervals for various devices external to the control panel.

	Maintenance & PM Schedule								
Group	Item	Action	Test for:	Frequency	Range or method				
	Pipe Fittings	Tighten to Spec.	Leaks	Quarterly	Bubble Test				
	Back Flow Flame Arrestor	Check for plugging	Flow at Static	Quarterly	Per Troubleshooting Guide				
External Piping & Components	Waste Gas Blocking Valve	Bench Test	Seal at Static	Annually	Per Troubleshooting Guide				
	Mixing "T" Venturi	Remove & Inspect	Flow at Static	Annually	Per Troubleshooting Guide				
	Nozzle	Remove & Inspect		Annually	No Erosion or Corrosion				
	Exhaust Heat Exchanger	Remove & Inspect	Carbon build up on interior	2000 hours of operation	Use 80 PSI Compressed Air to Puff from Outside to Inside				
	Secondary Chamber Oxidizer Target Puck	Remove from Top & Inspect	Visible Deterioration	4000 hours of operation	No Erosion or Corrosion				
	Secondary Chamber	Remove Jacket & blanket - Inspect	Visible Deterioration	4000 hours of operation	No Erosion or Corrosion				
Cell	Secondary Chamber Heating Element	Test in place	Test for open Circit & Tighten Field Connectors	4000 hours of operation	Element Resistance >15 $\Omega \& < \mathbf{\infty} \Omega$				
	Primary Chamber	Remove Jacket & blanket - Inspect	Visible Deterioration	4000 hours of operation	No Erosion or Corrosion				
	Primary Chamber Heating Element	Test in place	Test for open Circit & Tighten Field Connectors	4000 hours of operation	Element Resistance >15 $\Omega \& < \mathbf{\infty} \Omega$				
	Z-Purge	Open Panel Door	Z-Purge Operation	Monthly	Loss of Power to Controls				
Control Panel	By-Pass Orifice	Remove and clean	Blockage	2000 hours of operation	#74 Drill				
No other Preventative maintainance required	No other Preventative Any other failures inside the control panel should be return to CSI for Repairs.								

NOTES: Frequency of preventative maintenance is dependent on cleanliness of Compressed air (used for oxidation source) and Waste Gas Stream and is recommended based on commercial gas such as Natural Gas or Propane on the wetted components and Filtered Air. Actual Frequency may very with the waste gas and compressed air source. Frequency may change from application to application. Maintenance personnel should make note of results of PM analysis before shortening or lengthen the recommended frequency.

7.0 Troubleshooting Guide

Working on Electrical Equipment while powered implies a level of precaution which should be strictly observed and conducted by a qualified person. If after following this guide you cannot determine the probable cause of your problem contact your Emissions Rx Representative or call Combustion Systems Co., Inc. before attempting to disassemble the unit. Carless disassembly is potentially dangerous and can cause additional damage and cost to resolve.

	Forced Draft Units - <u>NFPA & C1D2</u>									
	WARNING: Before troubleshooting, refer to sequence of operation timeline and general operating procedures for Emissions Rx TM Unit.									
Problem	Error #	Probable Cause	Check	Appropriate Range	Actions					
			Is power turned on to panel?		Apply Power to Unit					
			Check if Fuses or Circuit Barker is Blown	110VAC to 120 VAC	Reset circuit breaker/replace fuse					
			Verify power to Z-purge Switch		Check wiring					
	1	No Power to Control Panel	Is Z-Purge green light on when panel is shut?	Green light is lit	Verify proper air supply, verify properly sealed panel, Replace Z-purge switch					
			Is controller powered ?	Visible display	Check CR1 for proper operation, bench test controller					
			Is TIC calling for heat?	110 VAC to 120 VAC	Verify correct power at element connections					
Unit not reaching	2	Loose Heating Element Connection	Check for loose field connections at element leads	xxxx in-lbs	Tighten terminals to spec.					
operating temperature	3	No power to lower heating element	Check voltage across lower element field connection	110VAC to 120 VAC	Check field wiring					
	4	Open lower heating element	Check amperage draw of element	7.9-8.9 amps	Replace lower heating element					
	5	No power to upper heating element	Check for voltage across upper element field connections	110VAC to 120 VAC	Bench test zero cross over relay and single loop controller, Replace thermocouple					
	6	Open upper heating element	Check amperage draw of element	7.9-8.9 amps	Replace upper heating element					
	7	High oxidation air flow	Check air supply pressure at panel connection	20 PSIG	Adjust pressure accordingly, verify bleed orifice installation					
	8	Air modulation valve failed open	Check air pressure at mixing tee	Less than 20 oz static pressure	Replace modulation valve					
	9	Blocking Valve not opening	Check voltage on solenoid	110VAC to 120 VAC	Bench test or replace controller,					
No Sample flow			Bench test solenoid	20 scfh @ 10"WC static pressure	Replace blocking valve					
within operating	10	Flame arrestor plugged	Bench test flame arrestor	20 scfh @ 10"WC static pressure	Replace flame arrestor					
temperature range	11	Failed thermocouple	Check controller for Temp reading	Type K thermocouple range	Replace thermocouple					
	12	No airflow at mixing tee	Check air leaks in piping	N/A	Return to manufacturer for repair					
Carbon Collecting	13	Waste gas out of Specification	Analyze Waste and compare to Specification.	See Specification at purchase.	Notify the factory					
Estidust medt	14	Waste Stream pressure to high	Check Waste Stream pressure	(3-4) " W.C.	Reduce pressure and Flow					
exchanger	15	Low Combustion Air Flow from Blower	Check unit for blockage	20 PSIG at panel connection	Check for Proper Operation					

-VERSON 1.1

Emissions Rx[™] Replacement Parts:

Model ERx -B-B-D-A-B-E-B-B & C shown below

Tag	Item	Part #	Qty.
А	Exhaust Liner	CSI-1101	1
В	Heating Element	CSI-1201	2
С	Retention Chamber	CSI-1301	1
D	Oxidation Chamber	CSI-1302	1
E	Thermocouple	CSI-1401	1
F	Retention Chamber H ₂ S Liner	CSI-1102	1
G	Oxidation Chamber H ₂ S Liner	CSI-1103	1
Н	Mixing Venturi	CSI-2101	1
J	Oxidation Nozle	CSI-2102	1
К	Flame Arrestor	CSI-2103	1
L	TRI Waste Gas Blocking Valve	CSI-2104	1
М	Control Panel	CSI-3100	1

<u>The above parts list is a partial list of major components.</u> Each unit is shipped with a complete parts list <u>specific to your unit.</u>

Appendix

Α	Orifice Calculations
B	Combustion Constants
С	UEL and LEL for Combustibles
D	UEL and LEL for Toxic Gases

-

28

CHAPTER 1 – ORIFICES & FLOWS

COEFFICIENTS OF DISCHARGE FOR VARIOUS TYPES OF ORIFICES

ORIFICE FLOW FORMULAS

The flow of air or gas through an orifice can be determined by the formula $\sqrt{\frac{1}{1}}$

$$Q = 1658.5 \text{ x A x C}_d \sqrt{\frac{\pi}{8}}$$

where Q = flow, cfh

- A =area of the orifice, sq. in. (see Pages 57 & 58)
- C_d =discharge coefficient of the orifice

(see above)

- h =pressure drop across the orifice," w.c.
- g = specific gravity of the gas, based on standard air at 1.0 (see Pages 19, 20, & 22 thru 24.)

1. Sizing Orifice Plates

To calculate the size of an orifice plate, this equation can be rearranged as follows:

$$A = \frac{Q}{1658.5 \text{ x } C_{d}} \text{ x } \sqrt{\frac{g}{h}}$$

2. Effect of Changes in Operating Conditions on Flow through an Orifice – General Relationship

$$\frac{Q_2}{Q_1} = \frac{A_2}{A_1} \times \frac{C_{d2}}{C_{d1}} \times \sqrt{\frac{h_2}{h_1}} \times \sqrt{\frac{g_1}{g_2}}$$

If any of the factors in this relationship remain constant from Condition 1 to Condition 2, they can be dropped out of the equation, yielding these simplified relationships. Each of them assumes only one factor has been changed.

2a.Flow Change vs. Orifice Area Change

$$\frac{Q_2}{Q_1} = \frac{A_2}{A_1}$$

2b.Flow Change vs. Pressure Drop Change

$$\frac{Q_2}{Q_1} = \sqrt{\frac{n_2}{h_1}}$$

This is the so-called "square root law."

2c. Flow Change vs. Specific Gravity Change $\frac{Q_2}{2} = \sqrt{\frac{g_1}{2}}$

3.Effect of Changes in Operating Conditions on Pressure Drop Across an Orifice–General Relationship:

$$\frac{h_2}{h_1} = \left(\frac{Q_2}{Q_1}\right)^2 x \left(\frac{A_1}{A_2}\right)^2 x \left(\frac{C_{d1}}{C_{d2}}\right)^2 x \quad \frac{g_2}{g_1}$$

Again, if any of the factors in this equation are unchanged from Condition 1 to Condition 2, they can be dropped out to form simplified relationships:

3a.Pressure Drop Change vs. Flow Change

$$\frac{h_2}{h_1} = \left(\frac{Q_2}{Q_1}\right)$$

This is the square root law, stated another way.

3b.Pressure Drop Change vs. Orifice Area Change $\frac{h_2}{h_{\tau}} = \left(\frac{A_1}{A_2}\right)^2$

3c. Pressure Drop Change vs. Specific Gravity Change $\frac{h_2}{2} - \frac{g_2}{2}$

$$\frac{1}{h_1} = \frac{1}{8}$$

This relationship may not apply where specific gravity has been changed by a change in gas temperature. See Page 25.

4. Effect of Changes in Gas Temperature on Flow and Pressure Drop through an Orifice

Raising a gas's temperature has two effects - it increases the volume and decreases the specific gravity, both in proportion to the ratio of the absolute temperatures. If we are concerned with changes in flows (cfh), these relationships must be used (assuming constant mass flow).

4a.Flow Change vs. Temperature Change

$$\frac{Q_2}{Q_1} = \sqrt{\frac{T_{ABS2}}{T_{ABS1}}}$$
 with $T_{ABS} =$ absolute temp.*

*See page 68 for calculation of the absolute temperature.

4b.Pressure Drop Change vs. Temperature Change

$$\frac{h_2}{1} = \frac{T_{ABS2}}{T_{SS2}}$$

 $h_1 - T_{ABS1}$

4

ORIFICE CAPACITY TABLES LOW PRESSURE GAS

Flows in these tables are based on an orifice pressure drop of 1" w.c. and a coefficient of discharge (C_d) of 1.0.

To determine flow through an orifice of a known diameter:

- 1. Locate the orifice diameter in the left-hand column of the table.
- 2. Read across to the column corresponding to the gas being measured. This is the uncorrected flow.
- 3. Multiply this flow by the coefficient of discharge of the orifice. (see page 4)
- 4. Correct this flow to the pressure drop actually measured, using the square root law (equation 2b, page 4).
 Example: What is the flow of natural gas through a 7/32" diameter sharp edge orifice at 6" w.c. pressure drop? From the table, uncorrected natural gas flow through a 7/32" orifice is 80.7 cfh at 1" w.c.

 C_d for a sharp edge orifice is 0.60 (page 1.1), so corrected flow is 80.7 x 0.60 = 48.4 cfh at 1" w.c. pressure drop. Per equation 2b, page 4,___

$$\frac{Q_2}{Q_1} = \sqrt{\frac{h_2}{h_1}} \text{ or } Q_2 = Q_1 x \sqrt{\frac{h_2}{h_1}}$$

Substituting the numbers for this case:

$$Q_2 = 48.4 \text{ x} \sqrt{\frac{6'' \text{ w.c.}}{1'' \text{ w.c.}}} = 119 \text{ cfh}$$

To determine the orifice size to handle a known flow at a specified pressure drop, reverse the process:

- 1. Correct the known flow to a pressure drop of 1 " w.c., using the square root law.
- 2. Divide the flow by the orifice coefficient.
- 3. In the orifice table, locate the column for the gas under consideration. In this column, locate the flow closest to the corrected value found in step 2.
- 4. Read to the left to find the corrected orifice size.
- Example: Size a gas jet for a mixer. Entrance to the jet orifice

converges at a 15° included angle. Gas is propane. Required flow is 120 cfh at 30" w.c. pressure drop. Per equation 2b, page 4.

$$\frac{Q_2}{Q_1} = \sqrt{\frac{h_2}{h_1}}$$
, or $Q_2 = Q_1 \sqrt{\frac{h_2}{h_1}}$

Substituting the numbers for this case:

$$Q_2 = 120 \text{ x} \sqrt{\frac{1}{30}} = 22 \text{ cff}$$

From page 1.1, Cd for a 15° convergent nozzle is 0.94, so corrected flow is

$$22 \div 0.94 = 23.4$$
 cfh.

Locate 23.4 cfh in the propane column of the orifice table and then read to the left to find a #26 drill size orifice.

CAPACITY, CFH @ 1"W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0

			Natural		Propane/		
Drill	Dia.		Gas	Air	Air	Propane	Butane
Size	In.	Area	0.60 Sp. Gr.	1.0 Sp. Gr.	1.29 Sp. Gr.	1.5 Sp. Gr.	2.0 Sp. Gr.
80	.0135	.000143	.308	.239	.210	.195	.169
79	.0145	.000165	.355	.275	.242	.225	.195
1/64	.0156	.00019	.409	.317	.279	.259	.224
78	.016	.00020	.431	.334	.294	.272	.236
77	.018	.00025	.538	.417	.367	.340	.295
76	.020	.00031	.668	.517	.455	.422	.366
75	.021	.00035	.754	.584	.514	.477	.413
74	.0225	.00040	.861	.668	.587	.545	.472
73	.024	.00045	.969	.751	.661	.613	.531
72	.025	.00049	1.06	.817	.720	.667	.578
71	.026	.00053	1.14	.884	.778	.722	.625
70	.028	.00062	1.33	1.03	.910	.844	.731
69	.0292	.00067	1.44	1.12	.984	.912	.790
68	.030	.00075	1.61	1.25	1.10	1.02	.885
1/32	.0312	.00076	1.64	1.27	1.12	1.04	.896
67	.032	.00080	1.72	1.33	1.17	1.09	.944
66	.033	.00086	1.85	1.43	1.26	1.17	1.01
65	.035	.00092	2.07	1.60	1.41	1.31	1.13
64	.036	.00102	2.20	1.70	1.50	1.39	1.20
63	.037	.00108	2.33	1.80	1.59	1.47	1.27
62	.038	.00113	2.43	1.88	1.66	1.54	1.33
61	.039	.00119	2.56	1.98	1.75	1.62	1.40
60	.040	.00126	2.71	2.10	1.85	1.72	1.49
59	.041	.00132	2.84	2.20	1.94	1.8	1.56
58	.042	.00138	2.97	2.30	2.03	1.88	1.63

CAPACITY, CFH @ 1" W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0

			Natural		Propane/		
Drill	Dia.		Gas	Air	Áir	Propane	Butane
Size	In.	Area	0.60 Sp. Gr.	1.0 Sp. Gr.	1.29 Sp. Gr.	1.5 Sp. Gr.	2.0 Sp. Gr.
57	.043	00145	3.12	2 42	2.13	1.97	1.71
56	.0465	.00170	3.66	2.84	2.5	2.32	2.01
3/64	.0469	.00173	3.73	2.89	2.54	2.36	2.04
55	.0520	00210	4.52	3.50	3.08	2.86	2.48
54	.0550	.0023	4.95	3.84	3.38	3.13	2.71
53	0505	0028	6.03	4.67	1 11	3.81	3.30
1/16	00333	.0020	6.69	5.17	4.11	1.01	3.50
52	0625	.0031	6.00	5.17	4.55	4.22	3.00
52	.0035	.0032	7.54	5.04	4.7	4.30	3.17
50	.0070	.0035	0.10	5.04	5.14	4.77	4.13
- 10	.070	.0030	0.10	0.34	0.17	5.10	4.40
49	.073	.0042	9.04	7.01	6.17	5.72	4.95
48	.076	.0043	9.26	7.17	6.31	5.86	5.07
5/64	.0781	.0048	10.3	8.01	7.05	6.54	5.66
47	.0785	.0049	10.5	8.17	7.2	6.67	5.78
46	.081	.0051	11.	8.51	7.49	6.95	6.02
45	.082	.0053	11.4	8.84	7.78	7.22	6.25
44	.086	.0058	12.5	9.67	8.52	7.9	6.84
43	.089	.0062	13.4	10.3	9.11	8.44	7.31
42	.0935	.00687	14.8	11.4	10.	9.36	8.1
3/32	.0937	.0069	14.9	11.5	10.1	9.40	8.14
41	.096	.0072	15.5	12.	10.6	9.81	8.49
40	.098	.0075	16.2	12.5	11.	10.2	8.85
39	.0995	.0078	16.8	13.	11.5	10.6	9.2
38	.1015	.0081	17.4	13.5	11.9	11.0	9.55
37	.104	.0085	18.3	14.2	12.5	11.6	10.
36	1065	.0090	19.4	15.	13.2	12.3	10.6
7/64	1093	.0094	20.2	15.7	13.8	12.8	11.1
35	110	0095	20.5	15.8	14	12.9	11.2
34	.111	.0097	20.9	16.2	14.2	13.2	11.4
33	.113	.0100	21.5	16.7	14.7	13.6	11.8
32	116	0106	22.8	17.7	15.6	11.1	12.5
31	120	0113	24.3	18.8	16.6	15.4	13.3
1/8	125	0123	26.4	20.4	18	16.7	14.5
30	1285	0130	27.0	21.6	10.	17.6	15.3
29	136	0145	31.1	24.1	21.2	19.7	17
20	1405	0155	22.2	21.1	21.2	21	10.0
20	.1405	.0155	33.3 22 E	25.0	22.7	21.	10.2
9/04	.1400	.0100	33.0	20.9	22.0	21.2	10.3
21	144	.0103	30.	27.1	23.9	22.1	19.2
20	1405	.0174	37.3	20.9	20.0	23.0	20.4
	.1490	.0175	07.0	29.1	23.0	23.7	20.0
24	.152	.0181	38.8	30.1	26.5	24.6	21.3
23	.154	.0186	39.9	30.9	27.2	25.2	21.9
5/32	.1562	.0192	41.2	31.9	28.1	26.1	22.6
22	.157	.0193	41.4	32.1	28.2	26.2	22.7
21	.159	.0198	42.5	32.9	29.	26.9	23.3
20	.161	.0203	43.6	33.7	29.7	27.5	23.9
19	.166	.0216	46.3	35.9	31.6	29.3	25.4
18	.1695	.0226	48.5	37.6	33.1	30.7	26.6
11/64	.1719	.0232	49.8	38.6	33.9	31.5	27.3
17	.175	.0235	50.4	39.1	34.4	31.9	27.6
16	.177	.0246	52.8	40.9	36.	33.4	28.9
15	.180	.0254	54.5	42.2	37.2	34.5	29.9
14	.182	.0260	55.8	43.2	38.	35.3	30.6
13	.185	.0269	57.7	44.7	39.4	36.5	31.6
3/16	.1875	.0276	59.2	45.9	40.4	37.5	32.4

CAPACITY, CFH @ 1" W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0

			Natural		Propane/		
Drill	Dia.		Gas	Air	Àir	Propane	Butane
Size	In.	Area	0.60 Sp. Gr.	1.0 Sp. Gr.	1.29 Sp. Gr.	1.5 Sp. Gr.	2.0 Sp. Gr.
12	189	02805	60.2	46.6	41	38.1	33
11	.191	.02865	61.5	47.6	41.9	38.9	33.7
10	.1935	.0294	63.1	48.9	43.	39.9	34.6
9	.196	.0302	64.8	50.2	44.2	41.	35.5
8	.199	.0311	66.7	51.7	45.5	42.2	36.5
7	201	0316	67.8	52.5	46.2	42.9	37.1
13/64	2031	0324	69.5	53.8	47.4	44	38.1
6	204	0327	70.2	54.3	47.8	44 4	38.4
5	2055	.0332	71.2	55.2	48.6	45.1	39.
4	.209	.0343	73.6	57.0	50.2	46.5	40.3
3	213	0356	76.4	59.2	52 1	483	41.8
7/32	2187	0376	80.7	62.5	55	51	44.2
2	.221	.0384	82.4	63.8	56.2	52.1	45.1
1	.228	.0409	87.8	68.	59.8	55.5	48.1
A	.234	.0430	92.3	71.5	62.9	58.4	50.5
15/64	2343	0431	92.5	71.6	63.1	58.5	50.7
B	.238	.0444	95.3	73.8	65.	60.3	52.2
č	.242	.0460	98.7	76.5	67.3	62.4	54.1
D	.246	.0475	102.	78.9	69.5	64.5	55.8
1/4	.250	.0491	105.	81.6	71.8	66.6	57.7
F	.257	.0519	111.	86.3	75.9	70.4	61.
G	.261	.0535	115.	88.9	78.3	72.6	62.9
17/64	.2656	.0554	119.	92.1	81.1	75.2	65.1
н	.266	.0556	119.3	92.4	81.4	75.4	65.3
, l	.272	.0580	124.	96.4	84.9	78.7	68.2
J	.277	.0601	129.	99.9	87.9	81.6	70.6
к	.281	.0620	133.	103.	90.7	84.1	72.9
9/32	.2812	.0621	133.2	103.2	90.9	84.3	73.
L	.290	.0660	142.	110.	96.6	89.6	77.6
M	.295	.0683	147.	113.	99.9	92.7	80.3
19/64	.2968	.0692	148.	115.	101.	93.9	81.3
N	.302	.0716	154.	119.	105.	97.2	84.1
5/16	.3125	.0767	165.	127.	112.	104.	90.1
0	.316	.0784	168.	130.	115.	106.	92.1
P	.323	.0820	176.	136.	120.	111.	96.4
21/64	.3281	.0846	182.	141.	124.	115.	99.4
Q	.332	.0866	186.	144.	127.	118.	102.
R	.339	.0901	193.	150.	132.	122.	106.
11/32	.3437	.0928	199.	154.	136.	126.	109.
S	.348	.0950	204.	158.	139.	129.	112.
Т	.358	.1005	216.	167.	147.	136.	118.
23/64	.3593	.1014	218.	169.	148.	138.	119.
U	.368	.1063	228.	177.	156.	144.	125.
3/8	.375	.1104	237.	184.	162.	150.	130.
V	.377	.1110	239.	185.	163.	151.	131.
W	.386	.1170	251.	194.	171.	159.	137.
25/64	.3906	.1198	257.	199.	175.	163.	141.
X	.397	1230	205.	205.	101.	108.	145.
12/20	404	12/0	214.	212.	107.	175.	150.
-13/32	.4002	1290	210.	213.	190.	170.	152.
2	.413	.1340	288.	223.	196.	182.	157.
Z1/04	.4219	.1398	300.	232.	205.	190.	104.
20/64	.43/3 1521	1612	346	200.	220.	204.	100
15/32	4687	1726	370	200.	253	234	203
10/0/		. 1720	010.	201.	LUU.	LUT.	LUU.

CAPACITY, CFH @ 1" W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0

			Natural		Propane/		
Drill	Dia.		Gas	Air	Åir	Propane	Butane
Size	In.	Area	0.60 Sp. Gr.	1.0 Sp. Gr.	1.29 Sp. Gr.	1.5 Sp. Gr.	2.0 Sp. Gr.
21/6/	1813	19/3	205	306	270	250	217
1/2	.4043	1043	401	300.	270.	200.	217.
22/64	5156	2000	421.	320.	207.	200.	231.
17/04	.0100	.2000	440.	347.	300.	203.	240.
11/32	5312	.2217	470.	300.	324.	301.	201.
35/64	.5468	.2349	504.	390.	344.	319.	276.
9/16	.5625	.2485	533.	413.	364.	337.	292.
37/64	.5781	.2625	563.	436.	384.	356.	308.
19/32	.5937	.2769	594.	460.	405.	376.	325.
39/64	.6093	.2916	626.	485.	427.	396.	343.
5/8	.625	.3068	658.	510.	449.	416.	361.
41/64	6406	3223	691	536	472	437	379
21/32	6562	3382	725	562	495	459	397
43/64	6718	3545	760	589	519	481	417
11/16	6875	3712	796	617	543	504	436
45/64	7031	3883	833	645	568	527	456
00/00	7407	.0000	070	070.	500.	527.	477
23/32	.7187	.4057	870.	674.	594.	551.	477.
47/64	.7343	.4236	909.	704.	620.	575.	498.
3/4	.750	.44179	948.	734.	646.	599.	519.
49/64	.7656	.46040	988.	765.	674.	625.	541.
25/32	.7813	.47937	1029.	796.	701.	651.	563.
51/64	.7969	.49873	1070.	829.	730.	677.	586.
13/16	.8125	.51849	1112.	862.	759.	704.	609.
53/64	.8281	.53862	1156.	895.	788.	731.	633.
27/32	.8438	.55914	1200.	929.	818.	759.	657.
55/64	.8594	.5800	1244.	964.	849.	787.	682.
7/8	8750	60132	1290	000	880	816	707
20/32	00700	64504	138/	1072	000. 014	875	758
15/16	0375	60020	1/81	11/7	1010	073	811
31/32	8830	73708	1581	1225	1070	1000	866
1	1.0	7954	1695	1205	11/0	1066	000.
1 1/10	1.0	.7034	1000.	1303.	1143.	1000.	323.
1-1/16	1.063	.88664	1902.	1474.	1297.	1203.	1042.
1-1/8	1.125	.99402	2133.	1652.	1455.	1349.	1168.
1-3/16	1.188	1.1075	2376.	1841.	1621.	1503.	1302.
1-1/4	1.250	1.2272	2633.	2040.	1796.	1665.	1442.
1-5/16	1.313	1.3530	2903.	2249.	1980.	1836.	1590.
1-3/8	1.375	1.4849	3186.	2468.	2173.	2015.	1745.
1-1/2	1.5	1.7671	3791.	2937.	2586.	2398.	2077.
1-9/16	1.563	1.9174	4114.	3187.	2806.	2602.	2253.
1-5/8	1.625	2.0739	4450.	3447.	3035.	2814.	2437.
1-11/16	1.688	2.2365	4799.	3717.	3273.	3035.	2628.
1-3/4	1 75	2 4053	5161	3998	3520	3264	2827
1-13/16	1.813	2 5802	5536	4288	3776	3501	3032
1_7/8	1.875	2 7612	5924	4589	4040	3747	3245
1_15/16	1 038	2 0/08	6320	4003	1316	4003	3/67
2	2.0	3 1416	6741	5221	4597	4263	3692
	2.0	0.1410	7040	5221.	= = = = = = = = = = = = = = = = = = = =	4040	4400
2-1/8	2.125	3.5466	7610.	5894.	5190.	4813.	4168.
2-1/4	2.250	3.9761	8531.	6608.	5818.	5396.	4673.
2-3/8	2.375	4.4301	9505.	7363.	6483.	6012.	5206.
2-1/2	2.50	4.9087	10532.	8158.	/183.	6661.	5769.
2-5/8	2.625	5.4119	11612.	8995.	7919.	7344.	6360.
2-3/4	2.75	5.9396	12744.	9872.	8691.	8060.	6980.
2-7/8	2.875	6.4918	13929	10789.	9499.	8809.	7629

8

-

					μ̈́	able 1	- Con	bustio	n Cor	Istant	s – Re	ferenci	e 1									
				-		Ť	eat of Co	mbustion			ft³ per fl	¹³ of Comb	oustible				lb per lt	o of Com	bustible			have
		Molocitar	Density ^b	Specific Volume ⁵ 63	Specific	Btu pe	ar ft'	Btu per	<u>a</u>	for R	tequired	c	Flue F	roducts		Req for Con	uired		Flue Ga	s Produ	cts	air Ib/
No. Substance	Formula	Weight	ff ³	per lb	(air=1)	Gross ^d	Net	Gross ^d	Net	õ	N _{2a}	Air	л Со	o N	1 ₂₄ (02 N	2a /	Air	202 1	P_2O	N2n	Btu
1 Carbon 2 Hydrogen 3 Owwen	υĨΟ	12.0110 2.0159 31 0088	0,0053	188.245	0.0696	324.2	273,9 (14,093 14	4,093	1.0	3.773 1.887	4.773 2.387	5 1	0 1.5	773 2.6 87 7.9	64 8.8 36 26.3	346 11. 353 34	510 3 290	664	— 8 937 26	1,353	8.167 5.619
4 Nitrogen	δz	28.0134	0.0738	13,543	0.9671										· ·							
4 Nitrogen (atm.) ^r 5 Carbon monoxide	z O Z N	28.1580 28.0104	0.0742 0.0738	13.474 13.542	0.9720 0.9672	320.6	320.6	4342	4342	1 20	1.887	2.387	12	÷ F	87 0.5	12	397 2.	468 1	571	-	897	5.684
6 Carbon dioxide	ő	44.0098	0.1166	8.574	1.5277		I	I			I	I		I				I	I	I	I	
Parafin series C _n H _{2m2} 7 Methane	CH	16.0428	0.0424	23,608	0.5548	1012	10	3.891 2	1511	0.0	7.547	9.547	10 2	0 7	35	89 13.2	246 17	235 2	743 2	246 13	246	7.214
8 Ethane	т Н С С	30.0697	0.0799	12.514	1.0466	1785	1634	2,334 2	0,429	1 1	3.206 1	6.706	000	13.	206 3.7	24 12	367 16	092 2	927 1.	797 12	367	7.205
a riopare 10 n-Butane	Ĕΰ	58,1235	0.1585	6,310	2.0758	3376	3124	21,299 16	9,657	50 10 10 10 10	4,526 3	1.026	10 04	0 24.5	26 3.5	218 11.8	382 15	460 3	029 1.	550 11	882	7.259
11 Isobutane 12 n-Pentane	°H'O	58,1235 72,1504	0.1580	6.328	2.0699 2.6450	3355 4258	3104	21,231 15 21,085 15	9,589	8.0 2	4,526 3 0.186 3	1.026 8.186	6.0 5	30.24	526 3.5 186 3.5	578 11.8	382 15. 781 15.	460 3. 329 3.	029 1.	550 11 498 11	882	7,282
13 Isopentane	C ² H ²	72.1504	0.2001	4,999	2.6202	4210	3908	1,043 1	9,455	8.0 3.	0.186 3	8,186	5.0 6.	30.0	86 3.5	11 11	781 15	329 3.	050 1.	498 11	781	7.284
14 Neopentane 15 n-Hexane	C ² H ²³	72.1504 86.1773	0,1984 ⁹ 0,2508	5.040 ⁴ 3.987	2,5989 ^s 3,2849	415995252	3857 4900	0,958" 19 20,943 19	9,370 9,392	80 92 36	0.186 3 5.846 4	8,186 5,346	5.0 6.	32.0	186 3.5 346 3.5	548 11 227 11 2	781 15	329 3. 240 3.	050	498 11 463 11	.781 .713	7.314
Olefin series C _n H _{zn}		0010				0007	001	-				000									000	
17 Propylene	r รับ	42,0807	0,1127	13.44/ 8.874	1,4760	2371	2220	1,039 15	9,678	4.5	6,980 2	1,480	30.0	0 16.9	80 3.4	1 1	362 14	784 3	138	284 11	362	7.027
18 n-Butene (Butylene) 19 Isobutene	μ, Γ,Γ	56.1076 56.1076	0.1524° 0.1524°	6.560 ^a 6.561 ^a	1.9966 ⁸ 1.9964 ⁸	3175 ⁹ 3156 ⁹	2974 2955 3	0,831 ⁹ 19	9,470	5.0 2.2 2.2	2,640 2	8.640	4 4 4	0 22.0	340 3.4 540 3.4	11.22	362 14	784 3. 784 3.	138 1.	284 11 284 11	362	7.097 7.141
20 n-Pentene	C ₅ H ₁₀	70.1345	0.1947	5,135	2.5508 ^h	40329	3781	0,704# 1	9,343	7,5 2	8,300 3	5,800	5.0 5	0 28.	3.4	11.22	362 14	784 3.	138 1.	284 11	362	7.140
Aromatic series C _a H _{2nd} 21 Benzene	c _e H	78.1137	0.2213	4.518	2,8989	4024	3873	8,179 1	7,446	7.5 21	8,300 3	5.800	6.0 3	0 28.3	3.0	72 10.2	201 13	274 3.	380 0.	692 10	1201	7.302
22 Toluene 23 Xylene	°,H° °,H°	92.1406 106.1675	0.2750" 0.3480"	3.637 ^h 2.874 ^h	3.6016 ^h 4.5576 ^h	5068 ^a 6480 ^a	4867 6228	8,430 ^a 1 8,622 ^a 1	7,602	90 105 3	3,959 4 9,619 5	2.959	7.0 8.0 4	33.6	559 3.1 519 3.1	125 10. 164 10.	378 13 508 13	504 3 673 3	343 0. 316 0.	782 10 848 10	.378 508	7.327 7.342
Miscellaneous	-	00000000	1000 0	007 77	01000	1011			0	L.		000			-	07 07	57	5	000	000	100	
24 Acetylene 25 Naphthalene	r Ľ Ú Ú	26.0379 128.1736	0,3384	14.48U 2.955 ^h	0.9046 4,4323 ^h	1484 5866	1433 5665	7,335 1	0,739 6,739	12.0 4	9,433 1 5,279 5	7.279 1	1 4	0 45.	733 3.0 779 2.9	962 - 107	201 13 947 12	2/4 3	380 0.434 0.	562 9	947	6.179 7.467
26 Methyl alcohol	CH,OH	32.0422 46.0601	0.0846	11.820 ^h	1.1081 ^h	868 ⁴	768	0,265	9073	1.5	5,660	7.160	010	200	000 1.4	198 4.9	974 6	472 1.	373 1.	124 4	.974	6.305
28 Ammonia	NH ³	17.0306	0.0454	22,0089	0.5951	4409	364	9680	7998	0.75	2,830	3,580	5 – 3 9	50	30 1.4	109	579 6.		 	587 5	502	6.290
29 Sulfur	s	32,0660	Ι	Ι	I	Ι	Ι	3980	3980	0.1	3.773	4.773	o°s 2°59	ю 1	73 1.0	000 3.3	320 4	310 1.	998 398		1.320	0.829
30 Hydrogen sulfide	H _z S	34,0819	0,0907	11.030	1.1875	643	593	7094	6534	1.5	5,660	7,160	5°0	0 5.6	980 1.4	110 4.6	582 6.	093 1.	880 0.	529 4	.682	8,576
31 Sulfur dioxide	so 202	64,0648 18,0153	0.1722	5,806 ⁴ 10,863	2,2558"	10 210		050.8		Ι	I	I	' I	1		' 			Ι	Ι		I
33 Air	22	28,9625	0.0763	13,098	1.0000	1000	3		3						 							
All gas volumes corrected to 6 a 1987 Atomic Weights: C=1;	50F and 14.6 2.011, H=1.0	96 psi dry. 10794, O=15.9	994, N=14,00	067, S=32,06)6. There of	4 July 10 10 10 10 10 10 10 10 10 10 10 10 10			рe,	Referen Correcti	ce 2, ASTN on from gro	1 3588-98. Iss to net h	eating ve	lue dete	mined by	deducting	the HV sh	own for w	ater vapo	r times th	e moles of	.Ή,

als cannot b Densities calculated from ideal values and compressibility factor given in ASTM D3568-98. Some of the materials cannol exist as gases at 60F and 14,696 psi, in which case the values are theoretical ones. Under the actual concentrations in which these materials are present, their partial pressure is low enough to keep them as gases.
c For gases saturated with water at 60F and 14,696 psi, 1,74% of the Btu value must be deducted. Reference 2,

34

f Reference 3, Jones, F.E. g Gas Processors Suppliers Association (GPSA) Data Book, Fig 23-2, Physical Constants, 1987. h Either the density or the compressibility factor has been assumed.

Gas Detection & Air Monitoring Specialists

Combustibles

	LEL	UEL	TLV/TWA	IDLH	Density
Material	(%/Vol)	(%/Vol)	(ppm)	(ppm)	(Air = 1.0)
Acetone	2.5	12.8	750	2,500	2.0
Acetylene	2.5	100.0	-A-	-A-	.9
Ammonia	15.0	28.0	25	300	0.6
Benzene	1.2	7.8	1.0	500	2.6
Butane	1.6	8.4	800	-U-	2.0
n-Butyl Acetate	1.7	7.6	150	1,700	4.0
Diborane	0.8	88.0	0.1	15	1.0
Ethane	3.0	12.5	-A-	-A-	1.0
Ethanol	3.3	19.0	1,000	-U-	1.6
Ethyl Acetate	2.0	11.5	400	2,000	3.0
Ethyl Ether	1.9	36.0	400	1,900	2.6
Ethylene Oxide	3.0	100.0	1	-C-	1.5
Gasoline (100 Octane)	1.4	7.6	300	-U-	3-4.0
Heptane	1.05	6.7	400	750	3.5
Hexane	1.1	7.5	50	1,100	3.0
Hydrogen	4.0	75.0	-A-	-A-	0.1
Isopropyl Alcohol	2.0	12.0	400	2,000	2.1
Methane	5.0	15.0	-A-	-A-	0.6
Methanol	6.0	36.0	200	6,000	1.1
Methyl Ethyl Ketone	1.4	11.4	200	3,000	2.5
Pentane	1.5	7.8	600	15,000	2.5
Propane	2.1	9.5	1,000	2,100	1.6
Propylene Oxide	2.3	36.0	20	400	2.0
Styrene	0.9	6.8	50	700	3.6
Toluene	1.1	7.1	50	500	3.1
Turpentine	0.8	?	100	800	4.7
Vinyl Acetate	2.6	13.4	10	-U-	3.0
Vinyl Chloride	3.6	33.0	1.0	-C-	2.2
Xylene	0.9	6.7	100	900	3.7

LEL	Lower Explosive Limit
UEL	Upper Explosive Limit
PPM	Parts Per Million
TLV/TWA	Threshold Limit Value/Time Weighted Average
IDLH	Immediately Dangerous to Life or Health
Density	< 1.0 = lighter than air
	> 1.0 = heavier than air
А	Asphyxiant
-	

- C Carcinogen
- U Data Not Available

PO Box 894 🔺 De Motte, IN 46310 🔺 800.952.3293 🔺 219.987.6825 🔺 Fax 219.987.6826 🔺 www.afcintl.com

Gas Detection & Air Monitoring Specialists

Toxics

	ΤΙ V/ΤΨΑ		LEL	LEL	Density	
Material	(mgg)	IDLH	(mag)	(%/Vol)	(Air=1)	
Acetone	750	2,500	25,000	2.5	2.0	
Ammonia	25	300	160,000	16.0	0.6	
Benzene	1.0	-C-	12,000	1.2	2.6	
Butane	800	-U-	16,000	1.6	2.0	
n-Butyl Acetate	150	1,700	17,000	1.7	4.0	
Carbon Dioxide	5,000	40,000	N/C	N/C	1.5	
Carbon Monoxide	25	1,200	125,000	12.5	1.0	
Chlorine	0.5	10	N/C	N/C	2.5	
Ethylene Oxide	1	-C-	30,000	3.0	1.5	
Ethyl Ether	400	19,000	19,000	1.9	2.6	
Gasoline	300	-U-	14,000	1.4	3-4.0	
Heptane	400	750	10,500	1.05	3.5	
Hexane	50	1,100	11,000	1.0	3.0	
Hydrogen Cyanide	10	50	56,000	5.6	0.9	
Hydrogen Sulfide	10	100	40,000	4.0	1.2	
Isopropyl Alcohol	400	2,000	20,000	2.0	2.1	
Methyl Acetate	200	3,100	31,000	3.1	2.6	
Methanol	200	6,000	60,000	6.0	1.1	
Methyl Chloride	50	2,000	81,000	8.1	1.8	
Methyl Ethyl Ketone	200	3,000	14,000	1.4	2.5	
Methyl Methacrylate	100	1,000	17,000	1.7	3.5	
Nitric Oxide	25	100	N/C	N/C	1.0	
Nitrogen Dioxide	3	20	N/C	N/C	1.6	
Pentane	600	15,000	15,000	1.5	2.5	
n-Propyl Acetate	200	1,700	17,000	1.7	3.5	
Styrene	50	700	9,000	.9	3.6	
Sulfur Dioxide	2	100	N/C	N/C	2.2	
1,1,1-Trichloroethane	350	700	75,000	7.5	4.6	
Toluene	50	500	11,000	1.1	3.2	
Trichloroethylene	50	1,000	80,000	8.0	4.5	
Turpentine	100	800	8,000	0.8	4.7	
Vinyl Chloride	1.0	-C-	36,000	3.6	2.2	
Xylene	100	900	9,000	.9	3.7	
LEL Lower Explosive L	_imit	UE	L Uppe	er Explosive L	imit	
PPM Parts Per Million		TL	V/TWA Thre	shold Limit Va	lue/Time	
		. –	Weic	hted Average		

IDLH	Immediately Dangerous to Life or Health	Density	< 1.0 = lighter than air
			> 1.0 = heavier than air
С	Carcinogen	N/C	Not Combustible

PO Box 894 🔺 De Motte, IN 46310 🔺 800.952.3293 🔺 219.987.6825 🔺 Fax 219.987.6826 🔺 www.afcintl.com

Sulfur Dioxide	Butane	Propane	Nilrous Oxide / Carbon Dioxide	Argon	Hydrogen Sulfide	Oxygen	Ethane	Air	Ethylene	Nilrogen/Carbon Monoxide	Acetylene	Neon	Ammonia	Methane	Helium	Hydrogen	Gas Meter is Calibrated With		dS
5.72	5.46	4.76	4.70	4.45	4.15	4	3.90	3.61	3.74	3.74	3.62	3.17	2.92	2.82	1.41	1	Hydrogen		e c
4.05	3.66	9616	££'£	3.15	2.94	2.82	2.76	2.69	2.66	2.64	2.56	2.25	2.06	2	1	07.0	Helium		ifi
2.03	1.93	1.68	1.67	1.58	1.47	1.41	1.38	1.35	1.33	1.32	1.28	1.12	1.03	1	0.50	0.35	Methane		ĉ
1.96	1.67	1.63	1.61	1.52	1.42	1.36	1.33	1.30	1.26	1.28	1.24	1.08	1	0.97	0.48	0.34	Ammonia		Grö
1.81	1.72	1.50	1.48	1.40	1.31	1.26	1.23	1.20	1.18	1.18	1.14	1	0.92	0.89	0.45	0.32	Neon		a v i
1.58	1.51	1.31	1.30	1.23	1.15	1.10	1.08	1.04	1.03	1.03	1	0.88	0.81	0.78	0.38	0.28	Ac etyle ne		ty
1.53	1.46	1.27	1.26	1.19	1.11	1.06	1.04	1.02	_	1	0.97	0.85	0.78	0.76	0.38	0.27	Nitrogen/Carbon Monoxide	Ga	Сo
1.52	1.45	1.26	1.25	1.18	1.11	1.06	1.04	1.01	-	1	0.96	0.84	0.78	0.75	0.38	0.27	Ethylene	ıs B	
1.50	1.43	1.25	1.24	1.17	1.09	1.05	1.02	-1	1.01	0.98	0.95	0.83	0.77	0.74	0.37	0.26	Air	eing	e c t
1.47	1.40	1.22	1.21	1.14	1.06	1.02	1	0.98	96.0	0.96	0.93	0.82	0.75	0.73	0.36	0.26	Ethane	s N I	io
1.43	1.37	6L'L	1.18	1.12	1.04	1	860	6.95	0.94	0.94	16'0	08.0	0.73	0.71	0.35	0.25	Oxygen	e d	э Т
1.38	1.32	1.15	1.13	1.07	1	0.95	0.94	0.92	0.90	0.90	28'0	0.76	0.70	0.68	0.34	0.24	Hydrogen Sulfide		ac
1.28	1.22	1.07	1.06	1	0.93	0.90	0.88	0.85	0.84	0.84	0.81	0.71	0.66	0.63	0.32	0.22	Argone		to
1.22	1.16	1.01	1	0.94	0.88	0.85	0.83	0.81	0.80	0.80	0.77	0.67	0.62	0.60	0.30	0.21	Nitrous / Carbon Dioxide		٢S
1.20	1.15	-	0.99	0.94	0.88	0.84	0.82	0.80	0.79	0.79	0.76	0.67	0.62	0.59	0.30	0.21	Propane		
1.05	-1	0.87	88.0	0.82	0.76	0.73	0.71	0.70	690	0.68	0.66	0.58	0.54	0.52	0.26	0.18	Butane		
-	0.95	0.83	0.82	0.78	0.72	0.70	0.68	0.66	0.66	0.65	0.63	0.55	0.51	0.49	0.25	0.18	Sulfur Dioxide		

-